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2.1 Introduction
The rapid advance in imaging technology has given rise to a wealth of multi-
dimensional images (e.g., color images, video, and multispectral/hyperspectral im-
ages). However, due to the limitations of imaging conditions, the captured multi-
dimensional data are always degraded. Multidimensional image recovery aims to
estimate the underlying high-quality data from the degraded observation and is a
fundamental problem in low-level computer vision. Without loss of generality, the
degradation process can be modeled as

O = A(X ) +N , (2.1)

where O is the observation, A is a linear mapping, X is the target high-quality mul-
tidimensional image, and N is the additive noise.1 Different combinations of A and
N are related to a wide variety of real-world applications. In the case that A refers
to the sampling operator and the noise term N vanishes, estimation of the complete
data X from the partial observation O is a tensor/matrix completion problem [1,2]. If
the noise term is taken into consideration, it becomes the noisy tensor/matrix comple-
tion problem [3,4]. When A is an identical mapping and N is mixed noise consisting
of Gaussian noise, sparse noise, and other noise types, multidimensional image re-
covery becomes the mixed noise removal problem and is common in remote sensing
hyperspectral images (HSIs) [5].

Estimation of X from O is an ill-posed inverse problem, and the maximum a pos-
teriori (MAP) estimation is an effective approach to solve this problem. Specifically,
we need to maximize the posterior probability P(X |O) under the Bayes rule [6], i.e.,

X ∗ = arg max
X

P(X |O) = arg max
X

P(O|X )P (X )

P (O)

= arg min
X

{− logP(O|X ) − logP(X )} .
(2.2)

In (2.2), P(O|X ) is the likelihood term and is determined by (2.1). Generally, we
can write − logP(O|X ) as f (A(X ) − O), and its minimization indicates that the
recovered results should conform to the degradation process in (2.1). We also call
it the data fidelity term. For example, when the noise is independent and identically
Gaussian distributed with variance σ 2 and A is an identical mapping, f (A(X ) −
O) can be formulated as 1

2σ 2 ‖X − O‖2
F with its factor absorbed by − logP(X ).

For the tensor completion problem, f (·) can be written as the Dirac delta function.
As for the prior term − logP(X ) that expresses the prior distribution of the data,
it can be written as λφ(X ), where lambda is a nonnegative parameter. Oftentimes,
φ(X ) is also referred to as the regularization term. Then, (2.2) can be rewritten as a
regularized optimization problem, i.e.,

X ∗ = arg min
X

{f (A(X ) −O) + λφ(X )} . (2.3)

1 Multiplicative noise can be modeled in a nonlinear mapping A when needed.
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Since f is determined by the degradation process, reasonable analysis and effective
exploitation of the underlying data’s prior knowledge to build φ is highly important
in this framework.

Multidimensional images are always inner-structured and globally correlated.
For instance, the bands of a hyperspectral image are highly correlated such that
its spectral vectors live in a low-dimensional subspace [7]. This low-dimensionality
can be mathematically formulated as low-rankness, i.e., representation of the high-
dimensional data under learned lower-dimensional bases. For matrices, although the
direct minimization of the rank is NP-hard, we can minimize the nuclear norm (i.e.,
the sum of the singular values) to faithfully enhance the low-rankness. However, if
multidimensional images are reordered into matrices and the corresponding recov-
ery problem is solved via matrix-based methods, such matricization will inevitably
destroy the intrinsic structure of multidimensional images. As the higher-order exten-
sion of the matrix, the tensor can provide a more natural and elegant representation
for multidimensional images. Thus, in this chapter, we mainly focus on the design of
a tensor low-rank regularizer for multidimensional image recovery.

Unlike for the matrix case, there is no unique rank definition for tensors. Thus,
the definition of the tensor rank is a fundamental problem. Many research efforts
have been devoted to this hot topic [8–11], such as the CANDECOMP/PARAFAC
(CP) rank and the Tucker rank. The CP rank is defined based on canonical polyadic
decomposition, where an N -th-order tensor is decomposed as the sum of the rank-
1 tensors [8,12–14], i.e., the outer product of N vectors. The CP rank is defined as
the minimal number of the rank-1 tensors required to express the data. The Tucker
rank is based on the Tucker decomposition that decomposes a tensor into a core
tensor multiplied by a matrix along each mode [8,15]. The Tucker rank is defined
as the vector consisting of the ranks of unfolding matrices along different modes.
The Tucker rank has been considered in the low-rank tensor completion problem by
minimizing the convex surrogate of its summation, i.e., the sum of the nuclear norm
(SNN) [2], or the nonconvex surrogates [16,17].

The tensor singular value decomposition (t-SVD) [18,19], based on the tensor–
tensor product (t-prod), has emerged as a powerful tool for preserving the intrinsic
structures of the tensor. The tensor nuclear norm (TNN) [20–24] is suggested as a
convex surrogate of the tensor tubal rank that is derived from the t-SVD framework.
The TNN-based multidimensional image recovery model is given by

min
X

{f (A(X ) −O) + λ‖X‖TNN} , (2.4)

where X ∈ R
n1×n2×n3 , ‖X‖TNN = ∑n3

i=1 ‖X̂ (i)‖∗, X̂ (i) is the i-th frontal slice of X̂ ,
and X̂ is the tensor generated by performing discrete Fourier transformation (DFT)
along the mode-3 fibers of X , i.e., X̂ = fft(X , [],3) in MATLAB�.

Compared with the Tucker and CP decomposition schemes, t-SVD provides an
algebraic framework that is more analogous to the matrix case [19], and has received
much attention in recent years. In this chapter, we review the framework of t-SVD
and the establishment of the TNN. Then, focusing on the multidimensional image



34 CHAPTER 2 Transform-based tensor singular value decomposition

recovery problem, we revisit recent advances based on t-SVD. Moreover, we delve
into the t-SVD framework, and replace its key module, which is the DFT, with other
transforms. Then, the transform-based t-SVD is introduced and we offer a deeper
insight into the inner mechanism of the whole t-SVD framework.

The rest of this chapter is organized as follows. In Section 2.2, we revisit the t-
SVD framework and the TNN. Specifically, Section 2.2.1 provides the basic tensor
notations and the t-SVD framework is given in Section 2.2.2. Sections 2.2.3–2.2.4
concentrate on the TNN minimization model and its extensions. Then, we introduce
the recent advance of the transform-based t-SVD in Section 2.3, from the linear in-
vertible transform in Section 2.3.1 to the noninvertible transform and data adaptive
transform in Section 2.3.2. Next, some numerical experiments are described in Sec-
tion 2.4. Finally, Section 2.5 draws conclusions and provides some possible directions
for future research.

2.2 Recent advances of the tensor singular value
decomposition

In this section, we first give some basic notations and definitions for tensors, and
then we introduce the framework of t-SVD. Next, the definition of TNN together
with the recovery of multidimensional visual data by TNN minimization will be pre-
sented. Subsequently, some nonconvex surrogates and additional regularization terms
are discussed. Finally, we give numerical examples to illustrate the performance of
the methods within the t-SVD framework for multidimensional visual data recovery.

2.2.1 Preliminaries and basic tensor notations
Throughout this chapter, lowercase letters, e.g., x, boldface lowercase letters, e.g., x,
boldface uppercase letters, e.g., X, and boldface calligraphic letters, e.g., X , are used
to denote scalars, vectors, matrices, and tensors, respectively. Given a third-order
tensor2 X ∈ R

n1×n2×n3 , we use Xijk or X (i, j, k) to denote its (i, j, k)-th element.
Its (i, j)-th mode-3 fibers, i.e., the vectors along the third dimension, are denoted
as X (i, j, :). The mode-3 fiber is also referred to as the tube. The k-th frontal slice
of X is denoted as X (k) (or X (:, :, k), Xk). The inner product of two same-sized
third-order tensors X and Y is defined as

〈X ,Y〉 :=
∑

i1,i2,i3

Xi1i2i3 ·Yi1i2i3 . (2.5)

2 In this chapter, we mainly focus on third-order tensors. The notations on this page can be naturally
extended to higher-order tensors.
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The Frobenius norm is then defined as

‖X‖F := √〈X ,X 〉 =
√∑

ijk

X 2
ijk. (2.6)

The mode-3 unfolding of X ∈ R
n1×n2×n3 is denoted as a matrix X(3) ∈ R

n3×n1n2 ,
where the tensor’s (i, j, k)-th element maps to the matrix’s (k, l)-th element satisfying
l = (j − 1)n1 + i. The mode-3 unfolding operator and its inverse are respectively
denoted as unfold3 and fold3, and they satisfy

X = fold3(unfold3(X )) = fold3(X(3)). (2.7)

The mode-3 tensor–matrix product of a tensor X ∈ R
n1×n2×n3 with a matrix A ∈

R
m×n3 is denoted by X ×3 A and is of size n1 × n2 × m. Element-wise, we have

(X ×3 A)ijk =
n3∑

n=1

XijnAkn. (2.8)

The mode-3 tensor–matrix product can also be expressed in terms of the mode-3
unfolding

Y = (X ×3 A) ⇔ Y(3) = A · unfold3(X ), (2.9)

where · is the matrix product.
Interested readers can refer to [8] for a more extensive overview.

2.2.2 The t-SVD framework
The basis of t-SVD is the definition of the multiplication operation between two third-
order tensors. It is well known that in linear algebra, if A is an m × n matrix and B is
a n × p matrix, the matrix product C = AB is defined to be the m × p matrix with

Cij =
n∑

k=1

AikBkj for i = 1,2, · · · ,m and j = 1,2, · · · ,p. (2.10)

Similarly, if we replace the numbers in a matrix with vectors of the same length
and use the circular convolution between two vectors instead of the multiplication
between two numbers, the tensor–tensor product (t-prod) can be defined.

Definition 2.1 (T-prod [19]). Let A be a tensor with size n1 × n2 × n3 and let B be
a tensor with size n2 × n4 × n3. Then, the tensor–tensor product3 between A and B

3 In this chapter, the symbol “∗” is used to denote t-prod, similar to the literature. However, please note
that this notation may be different in other chapters.
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is the n1 × n4 × n3 tensor C = A ∗B whose (i, j)-th tube is given by

C(i, j, :) =
n2∑

k=1

B(i, k, :) � C(k, j, :), (2.11)

where i = 1,2, · · · , n1 and j = 1,2, · · · , n4, and “�” represents the circular convo-
lution of two same-size vectors.

Since the circular convolution can be converted into element-wise multiplication
in the Fourier domain, we now consider the DFT on a third-order tensor. The 1D
DFT on a real-valued vector x ∈ Rn, denoted as x̄, is given by x̄ = Fnx ∈ Cn, where
Fn ∈ C

n×n is the DFT matrix. The (i, j)-th element of Fn is equal to ω(i−1)(j−1),

where ω = e
−2πι

n is a primitive n-th root of unity and ι2 = −1. The inverse DFT
matrix can be obtained as F−1

n ∈ Cn×n and we have F−1
n = 1

n
FH

n , where ·H is the
conjugate transpose. In this chapter, we use X̂ to denote the transformed tensor by
performing 1D DFT along the mode-3 fibers (tubes) of X . By using the DFT matrix
Fn3 ∈C

n3×n3 , we have

X̂ = X ×3 Fn3 . (2.12)

Additionally, X and X̂ can be transformed to each other via the fast Fourier trans-
form (FFT) and its inverse with a lower computation burden, for example, using the
MATLAB command fft (X , [],3) and ifft (X , [],3), respectively. Meanwhile, we
have

‖X‖F = √〈X ,X 〉 =
√

1

n3
〈X̂ , X̂ 〉 = 1√

n3
‖X̂‖F . (2.13)

Returning to the t-prod, the t-prod between A and B can be computed efficiently
by multiplying each pair of the frontal slices of the FFT-transformed tensors Â and
B̂ and computing the inverse FFT along the third dimension to obtain the result.

Definition 2.2 (Block-diagonal form [21]). Let X denote the block-diagonal matrix
of X̂ ∈ C

n1×n2×n3 , i.e.,

X = blockdiag(X̂ )

�

⎡
⎢⎢⎢⎢⎣
X̂ (1)

X̂ (2)

. . .

X̂ (n3)

⎤
⎥⎥⎥⎥⎦ ∈C

n1n3×n2n3 .
(2.14)

Furthermore, we denote the inverse operation of block-diagonal as blockdiag−1.
Then, for any two tensors A ∈ R

n1×n2×n3 and B ∈ R
n2×n4×n3 , we have

C = A ∗B ⇔ C = A · B. (2.15)
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The t-prod between two tensors is equivalent to the matrix multiplication in the
Fourier-transformed domain.

Definition 2.3 (Tensor conjugate transpose [19]). The conjugate transpose of a tensor
X ∈ R

n2×n1×n3 is a tensor XH ∈ R
n1×n2×n3 obtained by the conjugate transpose of

each of the frontal slices and then reversing the order of the transposed frontal slices
2 through n3: (

XH
)(1) =

(
X (1)

)H
and(

XH
)(i) =

(
X (n3+2−i)

)H
, i = 2, · · · , n3.

(2.16)

More intuitively, in the Fourier-transformed domain, it satisfies

(
X̂H

)(i) =
(
X̂ (i)

)H
. (2.17)

Definition 2.4 (Identity tensor [19]). The identity tensor I ∈ R
n1×n1×n3 is defined as

a tensor whose first frontal slice is the n1 × n1 identity matrix, and the other frontal
slices are zero matrices.

Definition 2.5 (F-diagonal tensor [19]). We call a tensor A ∈ R
n1×n1×n3 f-diagonal

if all of its frontal slices are diagonal matrices.

Definition 2.6 (Orthogonal tensor [19]). A tensor Q ∈ R
n1×n1×n3 is an orthogonal

tensor if

QH ∗Q = Q ∗QH = I. (2.18)

Definitions 2.3–2.6 are analogous to the basic ingredients in matrix format to
formulate the matrix SVD. Equipped with the these basic definitions, the t-SVD is
suggested.

Theorem 2.1 (T-SVD [19,24]). Let X ∈ Rn1×n2×n3 be a third-order tensor. Then it
can be decomposed as

X = U ∗ S ∗ VH, (2.19)

where U ∈ R
n1×n1×n3 and V ∈ R

n2×n2×n3 are the orthogonal tensors and S ∈
R

n1×n2×n3 is an f-diagonal tensor.

Please see the proof of Theorem 2.1 in [24]. The t-SVD of X ∈ R
n1×n2×n3 can be

efficiently obtained by computing a series of matrix SVDs on the frontal slices of X̂
in the Fourier domain. Nonetheless, because the SVD is not unique, it is suggested to
adopt the algorithm in Table 2.1 that can ensure that U , X , and V are real tensors [24].

Thus, the framework of t-SVD has been established. It originates from [18] and
has been updated in [24], extending many familiar tools of linear algebra to third-
order tensors. In particular, the t-prod, which is closed on the set of third-order
tensors, allows tensor factorizations that are analogs of matrix factorizations such
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Table 2.1 The algorithm for computing t-SVD.

Input: X ∈ R
n1×n2×n3 .

1. X̂ ← fft(X , [],3).
2. [U,S,V] = svd(X̂ (1)).
3. Û (1) ← U , Ŝ(1) ← S, V̂(1) ← V .

4. for i = 2 to 
 n3+1
2 � do

5. [U,S,V] = svd(X̂ (i)).
6. Û (i) ← U, Ŝ ← S, V̂(i) ← V

7. Û (n3−i+2) ← UH, Ŝ(n3−i+2) ← SH, V̂(n3−i+2) ← VH

8. end for
9. U ← ifft(Û, [],3), S ← ifft(Ŝ, [],3), V ← ifft(V̂, [],3).

Output: U , S, and V.

as SVD. Meanwhile, it also allows novel extensions of familiar matrix analysis to the
multilinear setting while avoiding the loss of information inherent in matricization or
flattening of the tensor [19].

2.2.3 Tensor nuclear norm and tensor recovery
Based on t-SVD, we can deduce the corresponding definitions of tensor multirank,
tubal-rank, and average-rank.

Definition 2.7 (Tensor tubal-rank [19], multirank [21], and average-rank [24]). Let
X ∈R

n1×n2×n3 be a third-order tensor. The tensor multirank, denoted as rankm(X ) ∈
R

n3 , is a vector whose i-th element is the rank of the i-th frontal slice of X̂ , where
X̂ = fft(X , [],3). We can write

rankm(X ) =
[
rank(X̂ (1)), rank(X̂ (2)), · · · , rank(X̂ (n3))

]
. (2.20)

The tensor tubal-rank of X , denoted as rankt(X ), is defined as the number of nonzero
tubes of S , where X = U ∗ S ∗ VH. Specifically, we have

rankt(X ) = #{i,S(i, i, :) �= 0}. (2.21)

The tensor average-rank4 of X , denoted as ranka(X ), is defined as

ranka(X ) = 1

n3

n3∑
k=1

rank(X̂ (i)). (2.22)

4 In [24], the tensor average-rank is defined in the original domain.
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According to the definitions of the three tensor ranks, given a third-order tensor
X , its three tensor ranks are related by [24]

ranka(X ) ≤ max(rankm(X )) = rankt(X ). (2.23)

Analogous to the matrix case, optimization problems related to the tensor ranks
defined in Definition 2.7 are difficult and adequate convex relaxations are required
for practical applications. Next, we give the definition of the TNN.

Definition 2.8 (Tensor nuclear norm [20]). The TNN of a tensor X ∈ R
n1×n2×n3 ,

denoted as ‖X‖TNN, is defined as the sum of singular values of all of the frontal
slices of X̄ , i.e.,

‖X‖TNN :=
n3∑
i=1

‖X̂ (i)‖∗, (2.24)

where X̂ (i) is the i-th frontal slice of X̂ and X̂ = fft(X , [],3).

We find that the TNN5 of a third-order tensor X is defined in the Fourier domain
and is equivalent to ‖X‖∗ where X = blockdiag(X̂ ). Thus, it can be proved that TNN
is the tightest convex relaxation to the �1-norm of the tensor multirank [21], which is
indeed the rank of the block-diagonal matrix obtained from the Fourier-transformed
tensor.

Before proceeding to solve the multidimensional image recovery model using
TNN, one key issue is to compute the proximal operator of TNN, i.e.,

X ∗ = arg min
X∈Rn1×n2×n3

τ‖X‖TNN + 1

2
‖X −Y‖2

F . (2.25)

Recalling that ‖X‖F = 1√
n3

‖X̂‖F , the optimization problem in (2.25) can be decou-
pled into n3 matrix nuclear norm minimization problems in the Fourier-transformed
domain as

X̂ ∗(i) = arg min
X

τ‖X‖∗ + 1

2n3
‖X − Ŷ(i)‖2

F , (2.26)

for i = 1,2, · · · , n3. For each i, the solution can be obtained by using the singular
value thresholding (SVT) [25]. Let X = U ∗ S ∗ VH be the t-SVD of X . We can
define a tensor singular value thresholding (t-SVT) operator as

Dτ (X ) = U ∗ Sτ ∗ VH, (2.27)

where Sτ can be computed by(
S ×3 Fn3 − n3τ

)
+ ×3 F−1

n3
(2.28)

5 In [24], the TNN is defined in the original domain instead of the Fourier domain, while it is numerically
equal to 1

n3

∑n3
i=1 ‖X̂ (i)‖∗ and is a tight convex envelope of the tensor average-rank.
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or

ifft
(
(fft(S, [],3) − n3τ)+ , [],3)

)
, (2.29)

where (·)+ indicates retaining the nonnegative part and setting the negative values to
0, and n3 is the length of the third dimension. Then, the solution of (2.25) is Dτ (Y).

Once the TNN is established, we provide a general iterative solving scheme based
on the alternating direction method of multipliers (ADMM) [26] to optimize the
TNN-based multidimensional image recovery model in (2.4). First, after introduc-
ing an auxiliary variable Y ∈ R

n1×n2×n3 , we rewrite (2.4) as

min
X ,Y

{f (A(X ) −O) + λ‖Y‖TNN} , s.t. Y −X = 0. (2.30)

Then, the argument Lagrangian function of (2.30) is given by

Lβ(X ,Y,M) = f (A(X ) −O) + ‖Y‖TNN + 〈Y −X ,M〉 + β

2
‖Y −X‖2

F , (2.31)

where M ∈ R
n1×n2×n3 is the Lagrangian multiplier and β is a nonnegative parameter.

Next, at the k-th iteration, the ADMM updates each variable and the multiplier
according to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yk+1 = arg min
Y

‖Y‖TNN + β

2
‖Y −X k + Mk

β
‖2
F

= D 1
β

(
X k − Mk

β

)
,

X k+1 = arg min
X

f (A(X ) −O) + β

2
‖Yk+1 −X + Mk

β
‖2
F ,

Mk+1 = M+ β(Y −X ).

(2.32)

Commonly, the Frobenius norm is used to construct the data fidelity term, i.e.,
f (A(X ) −O) = 1

2‖A(X ) −O‖2
F . Thus, the updating of X k+1 is described by

X k+1 = (
A∗A+ βI

)−1
(
A∗(O) + βYk+1 +Mk

)
, (2.33)

where A∗ is the adjoint of A and I is the identical mapping.
Practically, this TNN minimization model outperforms the matrix-based method

on the completion of videos [21] and denoising of HSIs [27]. Specifically, when the
underlying low-tubal rank tensor satisfies the tensor incoherent condition (Eq. (25)
in [22]), it can be exactly recovered by minimizing the TNN with high probability as
long as the number of samples is of a certain order with respect to both the tensor size
and tubal rank [22]. Additionally, Lu et al. [24] established the theoretical guarantee
for the exact recovery of the tensor robust component analysis problem via mini-
mizing the TNN. Zhang et al. [28] proposed a modified tensor principal component
pursuit incorporating the prior subspace information to recover the low tubal rank and
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the sparse components under a significantly weaker incoherence assumption. Further-
more, the t-SVD framework together with the TNN have been investigated for many
other applications on multidimensional images, such as tensor recovery from binary
measurements [29], robust tensor completion [30], hyperspectral image fusion [31],
and subspace clustering [32,33].

2.2.4 Extensions
In this section, we will introduce some recent advances based on the t-SVD frame-
work.

2.2.4.1 Nonconvex surrogates
For the matrix case, it has been discussed that the minimization of the matrix nuclear
norm with the SVT operator will cause unavoidable biases in some situations. For
example, it will cause rank deficiency, namely, the estimated results will be of lower
rank than the original ground truth data. Meanwhile, the variance of the estimated
data corresponding to the magnitude of singular values will also be smaller than that
of the original data. The main origin of these effects is that the nuclear norm is a re-
laxation of the matrix rank, and all of the singular values are decreased equally when
minimizing the nuclear norm with the SVT operator. To avoid this issue, many low-
rank matrix recovery methods tailor weighted forms of the matrix nuclear norm or
other nonconvex surrogates for the rank function. Below, we will give a brief review
of similar advances under the t-SVD framework.

Let us first examine two typical examples. In [34], Oh et al. proposed to minimize
the partial sum of singular values (PSSV). For a matrix X ∈ R

n1×n2 , its PSSV is
defined as

‖X‖p=N �
min(n1,n2)∑

i=N+1

σi(X), (2.34)

where σi(X) denotes the i-th largest singular value of X for i = 1, . . . ,min(m,n).
Meanwhile, Hu et al. [35] proposed the truncated nuclear norm of a matrix that is
given by the matrix nuclear norm subtracted from the sum of the largest few singular
values. Given a matrix X ∈ R

n1×n2 , the truncated nuclear norm has an definition
equivalent to that of PSSV, while the authors minimized

‖X‖∗ − Tr(AlXBT
l ), (2.35)

where Tr(·) is the trace and the rows of Al ∈ R
r×n1 and Bl ∈ R

r×n2 are taken from
the singular vectors corresponding to the first r largest singular values of X at the l-th
iteration. There are two obvious advantages of these two strategies in [34,35]: (i) rank
deficiency is avoided by keeping the first N singular values; and (ii) the variance of
the data is well preserved because large singular values are well retained.

In [36,37], Jiang et al. generalized the PSSV to the partial sum of TNN (PSTNN)
for third-order tensors while Xue et al. generalized the truncated nuclear norm to the
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truncated TNN. For a third-order tensor X ∈R
n1×n2×n3 , its PSTNN is given by

‖X‖PSTNN �
n3∑
i=1

‖X̂ (i)‖p=N. (2.36)

Meanwhile, the truncated TNN of X ∈R
n1×n2×n3 is defined as

‖X‖TNN − Tr(Al ∗X ∗BT
l ), (2.37)

where Al ∈ R
r×n1×n3 and Bl ∈ R

r×n2×n3 come from the t-SVD of X at the l-th
iteration. In [38], Zhang et al. proposed the corrected TNN based on a similar idea.
The experimental results of [36–38] show that these generalizations are superior to
the TNN for color image and video recovery.

More generally, for a matrix X ∈ R
n1×n2 , its weighted nuclear norm (WNN) [39]

can be defined as

‖X‖w,∗ =
∑

i

wiσi(X), (2.38)

where wi ≥ 0 (i = 1,2, · · · ,min(n1, n2)) is a nonnegative weight. Then, the PSSV
and the truncated nuclear norm fall into a special case of WNN with setting wi = 0
for i ≤ r and wi = 1 for i > r . In [39], the authors suggested an effective and efficient
reweighting strategy by setting wi = c

σi (Xl )+ε
at the (l +1)-th iteration, where c is the

nonnegative regularization parameter and ε is a small positive number and is used to
avoid division by zero. Huang et al. [40] and Liu et al. [41] extended the WNN to the
third-order tensor case and proposed the weighted TNN. In their approaches, each
singular value of X̂ (i) (i = 1,2, · · · , n3) is assigned a weight.

Many other nonconvex surrogates of the rank function (or the �0) have been con-
sidered for the horizontal slices of X̂ (or the singular values of X̂ ). Thus, these
nonconvex surrogates are extended for third-order tensors under the t-SVD frame-
work [42]. Next, some popular surrogates are listed. The nonconvex logdet function
for a matrix in [43] has been applied for blockdiag(X̂ ) by Ji et al. [44]. The log-
arithmic function [45] and the Laplace function [46] have been introduced to the
singular values of blockdiag(X̂ ) in [47] and [48], respectively. Additionally, the �p-
norm (0 < p < 1) of the matrix’s singular values, i.e., the Schatten-p norm,6 has
been extended for third-order tensors in [49]. Moreover, Gao et al. [50] extended
the weighted form of the Schatten-p norm [51] for third-order tensors. Wang et
al. [52] utilized the prior knowledge about the frequency spectrum in the t-SVD
framework and assigned different weights on the matrix nuclear norm of different
frontal slices. Apart from the nonconvex surrogates of the rank function, low-rank
matrix factorization techniques are also extended to low-tubal rank tensor factoriza-
tion [53–55] in which the computational burden due to SVD computation is reduced.

6 It is a quasinorm when 0 < p < 1.
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Other approaches tailoring the special structure of tensor singular values are reported
in [56,57].

2.2.4.2 Additional prior knowledge
Enhancing the low-rankness of the underlying tensor by minimizing the convex TNN
or the above nonconvex surrogates has been demonstrated to be effective for mul-
tidimensional image recovery. However, this approach may fail in two cases. First,
many real-world multidimensional images consist of abundant fine details and are
not strictly of low tubal rank. Second, when the sampled elements are extremely lim-
ited or structured, the rank of the observation will be low. Actually, being low-rank
and sufficient samples are the basic assumptions in the theoretical guarantee for exact
recovery when optimizing (2.4). When minimizing the nonconvex surrogates, those
criteria may be relaxed but still hold. Thus, these two challenges are unavoidable in
practical scenarios.

To address these issues, we can introduce additional prior knowledge for multi-
dimensional image recovery. Multidimensional images can be viewed as a set of 2D
natural images, such as a video consisting of a series of frames. Thus, the widely used
piece-wise smoothness can be utilized via adding the total variation (TV) or framelet
regularizer [58,59]. Moreover, the well-known nonlocal self-similarity has also been
employed [60,61]. The TV regularizer was incorporated into the TNN-based mul-
tidimensional image recovery models by exploiting the local smoothness [62,63].
Recently, Zhao et al. [64] introduced an implicit regularizer and adopted a denoising
deep convolution neural network (CNN) as the solution mapping of its correspond-
ing subproblem under the plug-and-play framework. Since the deep learning-based
methods can learn data-driven priors from a large number of natural images [65–67],
the performance of the method in [64] is promising.

2.2.4.3 Multiple directions and higher-order tensors
Although the t-SVD framework has achieved great success, it is limited in that it
treats the dimensions of third-order tensors differently. As discussed in [68], when
computing the t-prod, the selection of the dimension to apply FFT7 will result in
quite different performance. Another obvious limitation is that t-SVD is suitable only
for third-order tensors. When the multidimensional image is of fourth order, such as
color videos with two spatial dimensions, one temporal and one color dimension, or
even higher order, the tensor is suggested to be reshaped into the third order to fit the
framework of t-SVD.

An extension of this method is to simultaneously minimize the TNN of the ten-
sors with three kinds of permutation of its dimensions [5,69], that is, to permute the
original third-order tensor X ∈ R

n1×n2×n3 with the scale of the third dimension as n3,
n2, and n1, respectively, and minimize the summation of their TNNs. After adopting

7 One can twist or permute the dimensions of a third-order tensor. Thus, when computing t-prod, the
Fourier transformation is conducted along the specified third mode.



44 CHAPTER 2 Transform-based tensor singular value decomposition

this strategy, the performance is improved compared with minimizing the TNN. Ad-
ditionally, it can be interpreted as (i) applying FFT along one specified dimension of a
third-order tensor, (ii) obtaining a transformed tensor such as X̂ , and (iii) computing
the nuclear norm of the slices supported by the remaining two dimensions.

Furthermore, for an N -th-order (N ≥ 3) tensor X ∈ R
n1×n2×···×nN , we can se-

lect two modes and reshape the data into a third-order tensor while concatenating the
remaining N −2 dimensions. Then, we can compute its TNN and sum them for differ-
ent selections of these two modes [70,71]. However, since it is necessary to compute
C2

N (the number of 2-combinations from a given set of N elements) TNNs for an
N -th-order tensor, this approach may be time consuming when the order is high.
Meanwhile, one important advantage of t-SVD is that it treats the third-order tensor
data integrally, avoiding the information loss inherent in matricization or flattening.
Thus, generalization of the t-prod, which is fundamental in the t-SVD framework,
for higher-order tensors as in [72,73] may be more attractive. Nevertheless, the cor-
responding definition of tensor rank or TNN is still under development.

2.2.5 Summary
The t-prod plays a fundamental role for the construction of the t-SVD framework. The
novel notion of the tensor rank and TNN are subsequently deduced. The capability of
TNN-based models has been demonstrated in the literature, for example in [20–22,24,
74]. Additionally, the extensions of the approach mentioned above can substantially
enhance the performance in specific applications. Several numerical examples are
given in Section 2.4.1. Nonetheless, in the next section, we delve into the t-SVD
framework and explore another possible approach.

2.3 Transform-based t-SVD
In this section, we focus on the Fourier transform in the t-SVD. When computing
the t-prod, the 1D DFT is applied on the mode-3 fibers to convert the circular con-
volution to element-wise multiplication. Thus, the tensor low-rankness within t-SVD
can be viewed as the low-rankness in the transformed domain. For multidimensional
images, the mode-3 fibers can be temporal vectors of a video or spectral vector of
an HSI. From the signal processing perspective, the Fourier transform has certain
limitations. Basically, in the implementation of the DFT or FFT within t-SVD, the
padding boundary is periodic or circular by default. The circular boundary is unde-
sirable for the temporal or spectral vectors in multidimensional images. Furthermore,
the computation of DFT gives rise to complex values, leading to high computational
complexity. Moreover, the Fourier transform leads to information loss that varies with
time for the temporal vectors in videos or the spectral vectors of HSIs. Therefore, it is
natural to find some substitutes that are more suitable for multidimensional images.
Thus, below, we start with replacing the DFT by linear invertible transforms and end
with a discussion of the possible noninvertible cases. With many basic ingredients
given above, this section will be much briefer.
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2.3.1 Linear invertible transform-based t-SVD
In [75], Madathil and George employed the discrete cosine transform (DCT) within
the t-SVD framework for video completion and denoising. Xu et al. [76] and Lu et
al. [77] also adopted the DCT as a substitution of DFT for tensor completion. DCT
shows two obvious advantages over DFT under the t-SVD framework. First, the com-
putation of DCT does not involve complex numbers, reducing the computational cost.
Second, in the implementation of the DCT, the boundary condition along the tubes is
reflexive. The experimental results of [76] illustrate that the quality of the frames (or
bands) at the beginning and the end is strongly improved when minimizing the DCT-
induced TNN. The frames (or bands) at the beginning and the end correspond to the
head and the tail of the tubes, respectively. This shows that the reflexive boundary
generated by DCT is more reasonable than the circular boundary required by DFT
for videos or MSIs.

The origin of the use of DCT instead of DFT within the t-SVD framework can be
traced back to [78], in which Kernfeld et al. noted that the t-prod, together with the
tensor decomposition scheme, can be defined via the DCT along the third mode or
even with any invertible linear transform. As mentioned in (2.15), the t-prod between
two tensors A ∈ R

n1×n2×n3 and B ∈ R
n2×n4×n3 is equivalent to

blockdiag(Â) · blockdiag(B̂), (2.39)

where Â = A×3 Fn3 is the transformed tensor and is equivalent to B̂. Otherwise, for
simplicity, given two tensors A ∈R

n1×n2×n3 and B ∈R
n2×n4×n3 , we denote

A©B (2.40)

as the frontal-slice-wise product,8 implying that

(A©B)(i) = A(i) ·B(i) for i = 1,2, · · · , n3. (2.41)

Therefore, we can define the t-prod with a given linear invertible transform via replac-
ing the DFT matrix Fn3 by a selected linear invertible transform matrix. We denote
the linear invertible transform matrix as L ∈ C

n3×n3 , and it satisfies

L−1 · L = L · L−1 = In3 , (2.42)

where L−1 is the inverse transform matrix of L and In3 ∈ R
n3×n3 is the identity ma-

trix. Then, the linear invertible transform-based t-prod can be defined.

Definition 2.9 (Transform-based t-prod [78]). Let L ∈ C
n3×n3 be a linear invertible

transform matrix. The linear invertible transform-based t-prod between two tensors
A ∈R

n1×n2×n3 and B ∈R
n2×n4×n3 is defined as

C ∈ R
n1×n4×n3 = A ∗L B = ((A×3 L) © (B ×3 L)) ×3 L−1. (2.43)

8 In Definition 2.1 of [78], it is also called face-wise product.
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Table 2.2 The algorithm for computing transform-
based t-SVD.
Input: X ∈ Rn1×n2×n3 and L ∈ Cn3×n3 .

1. X̂ ← X ×3 L.
4. for i = 1 to n3 do
5. [U,S,V ] = svd(X̂ (i)).
6. Û (i) ← U , Ŝ ← S, V̂(i) ← V

8. end for
9. U ← Û ×3 L−1, S ← Ŝ ×3 L−1, V ← V̂ ×3 L−1.

Output: U , S, and V.

The corresponding definitions, such as tensor transpose, identity tensor, and or-
thogonal tensor, with the linear invertible transform L-induced t-prod, can be defined
in the same manner as Definitions 2.3–2.6. To save space, we omit their specific def-
initions here and note that the definition of the f -diagonal tensor is still the same as
Definition 2.5 since it is defined in the original domain rather than in the transform
domain. Moreover, we note that the tensor transpose should satisfy (2.17) when it is
defined. Interested readers are suggested to refer to [78] for details. After obtaining
the transform-based t-prod, we can obtain the transform-based t-SVD.

Theorem 2.2 (Transform-based t-SVD [78]). Let L ∈ C
n3×n3 be a linear invertible

transform matrix. For a third-order tensor X ∈R
n1×n2×n3 , it can be decomposed as

X = U ∗L S ∗L VH, (2.44)

where U ∈ Rn1×n1×n3 and V ∈Rn2×n2×n3 are the orthogonal tensors defined by using
the transform-based t-prod and S ∈ Rn1×n2×n3 is an f-diagonal tensor whose frontal
slices are diagonal matrices.

The linear invertible transform L-induced t-SVD of X ∈ R
n1×n2×n3 can be effi-

ciently obtained by computing a series of matrix SVDs on the frontal slices of X ×3 L
in the transform domain, as shown in Table 2.2. Consistent with the t-SVD framework
based on DFT, we can define the tensor tubal rank, multirank, and average rank based
on the transform-based t-SVD. Since this chapter focuses on the practical usage of
the low-rank regularization for multidimensional image recovery, we omit the spe-
cific tensor rank definitions that resemble Definition 2.7, and we turn directly to the
convex surrogate. We can obtain the linear invertible transform-induced TNN under
the transform-based t-SVD.

Definition 2.10 (Transform-based TNN). Let L ∈C
n3×n3 be a linear invertible trans-

form matrix. The linear invertible transform-based TNN of a tensor X ∈R
n1×n2×n3 is

defined as

‖X‖L−TNN :=
n3∑
i=1

∥∥∥(X ×3 L)(i)
∥∥∥∗ . (2.45)
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After obtaining the transform-based TNN, we can replace the TNN term in (2.4)
with any given transform L for solving the multidimensional image recovery prob-
lem. This is also a convex problem and can be optimized via ADMM iterations shown
in (2.32). For brevity, we do not go deep into the details.

In [79], Song et al. considered the general unitary transformation. Let U ∈C
n3×n3

be the unitary transform matrix with

UHU = UUH = In3 . (2.46)

Based on the unitary transform, they proposed the transformed TNN as shown in
(2.45). Similar to the original t-SVD framework, the transformed TNN is the convex
envelope of the sum of the rank of (X × U)’s frontal slices. They also provide the
theoretical guarantee of the exact recovery from incomplete and sparsely corrupted
observations. Further, Zhang et al. employed the unitary-transformed TNN for tensor
completion with Poisson observations [80]. The original t-SVD framework is a spe-
cial case of the work by Song et al. [79] if setting the transformed matrix as 1√

n3
Fn3 .

Additionally, Lu et al. [77] considered the general linear invertible transformation
L ∈ R

n1×n2×n3 that satisfies

LTL = LLT = lIn3, (2.47)

where ·T denotes the matrix transpose and l > 0 is a constant. Based on this linear
invertible transform, they deduced the new tensor tubal rank, tensor spectral norm,
and TNN.9 Under certain tensor incoherent conditions, one can exactly recover the
underlying data from incomplete observations [77].

2.3.2 Beyond invertibility and data adaptivity
According to the theoretical results rigorously established in [77,79], the original t-
SVD framework that is implemented with the DFT is a special case of the t-SVD
framework based on the linear invertible transform. Thus, the extensions introduced
in Section 2.2.3 can be directly generalized for the linear invertible transform-based
t-SVD. For example, in [75], the authors proposed a 3D DCT-based TNN mini-
mization model for multidimensional image denoising and completion. In [81], the
transform-based t-prod between third-order tensors is generalized to N -th-order ten-
sors (N ≥ 3).

However, one key issue in the transform-based t-SVD framework, i.e., the design
or choice of the transform is still challenging. Empirically, transformations that can
make the original data lower-rank in the transformed domain are preferred. However,
a linear invertible transform will not essentially change the tensor ranks defined in
Definition 2.7. Therefore, we need to delve more deeply into the inner mechanism of
minimizing transform-based TNN for multidimensional image recovery.

9 In [77], the TNN based on linear transformation is similar to (2.45) but multiplied by a factor 1
l
.
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In [79], Song et al. pointed out that with a suitable transformation that can redis-
tribute tubal entries into the matrix slices (along the tube direction) of the tensors,
low-rank transformed matrix slices can be generated. They illustrate the distribution
of all the frontal slices’ singular values from the transformed data under different
transformations. More small singular values are generated after the wavelet transform
than by the DFT. Thus, the wavelet-transformed (along the tubes) data are closer to
lower-rank data.

Recently, Jiang et al. [82] adopted the tight wavelet frame (framelet) as the trans-
formation. The framelet system used in [82] is generated from the B-spline and
implemented in a multiresolution manner [83]. The transform matrix can be writ-
ten as W ∈ R

wn3×n3 , where w ≥ 1 is an integer and W satisfies the unitary extension
principle (UEP) [84], i.e.,

WTW = In3 , (2.48)

where WT is indeed the inverse transform matrix of W. It is clear that WWT �=
Iwn3 . This means that the framelet transform is semi-invertible. Nonetheless, Jiang et
al. directly defined the framelet-based TNN (FTNN) as

∑wn3
i=1 ‖ (X ×3 W)(i) ‖∗ and

replaced the TNN term in (2.4) by the FTNN. Then, this model can be optimized via
the ADMM. Their method can be understood as an iterative method with iterations
consisting of: (i) performing the framelet transform; (ii) regularizing the nuclear norm
of the transformed data’s frontal slices; and (iii) carrying out the inverse framelet
transform. Owing to the UEP, these iterations are not difficult.

In [82], the authors showed that the framelet transform along the third mode can
generate more small singular values of the transformed data’s frontal slices than DCT
for different types of multidimensional imaging data. Consequently, their results are
also better than those obtained by minimizing the DCT-deduced TNN or the original
TNN obtained using DFT. Furthermore, they also computed the numerical rank of
the transformed data’s frontal slices. Given a tolerance for computing the numerical
rank, the framelet-transformed data can be better approximated with lower rankness,
generating better recovery results. Thus, we can deduce an empirical rule for choos-
ing the transform. That is, the transform that can generate lower-rank frontal slices in
the transformed domain for a specific type of data and for which the inverse transform
is not difficult to obtain should be chosen.

In the above discussion, we only mentioned the predefined transform. If we in-
tend to find the transform satisfying the empirical rule for different types of data, a
more flexible approach is to use data adaptive transform. In addition to the wavelet
transform, Song et al. [79] also adopted a data-dependent unitary transform. They
first optimized (2.4) and set the obtained result as an initial guess X0 ∈ R

n1×n2×n3 .
Then, the first r left singular vectors of X0’s mode-3 unfolding matrix are extracted
to constitute the transform matrix. The performance of this strategy is better than that
obtained using the predefined wavelet transform.

Meanwhile, Kong et al. [85] constructed a principal component extraction matrix
Q that maximizes the distribution variance of {‖ (X ×3 Q)(i) ‖F }. The matrix Q can
be obtained from the left singular vectors of mode-3 unfolding of X . Interestingly,
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the transform matrix Q in [85] will be updated in their algorithm during the iterative
process. In their experiments, they also use an oracle Q that is computed from the
complete data and its performance is surprisingly good. This confirms that a data-
dependent transform is powerful and flexible.

In [86], Jiang et al. replaced the inverse transform, i.e., F−1
n3

, with a data adaptive
term. Their model can be written as

min
Z,D

n3∑
i=1

‖Z(i)‖∗ s.t. (Z ×3 D)� = O�, (2.49)

where D ∈ R
n3×d is a data adaptive dictionary, d � n3 is a positive integer, and

the �2-norm of D’s columns should be less than or equal to 1. From their learned
dictionaries, it can be found that the atoms will vary for different types of data and
adaptively fit the variation of tubes.

2.4 Numerical experiments
In this part, we provide several numerical examples on different kinds of applications,
including hyperspectral image denoising & completion, color image demosaicing,
and (hyperspectral) video completion. The traditional t-SVD-based methods and their
extensions are discussed in Section 2.4.1. Section 2.4.2 reports the results from the
transform-based t-SVD methods.

2.4.1 Examples within the t-SVD framework
As mentioned above, we show three numerical experiments with approaches within
the traditional t-SVD framework. One experiment is simulated on an HSI that is a
subimage of the Washington DC Mall dataset.10 This HSI is of the size 256 × 256 ×
191, so that it contains 256 × 256 spatial pixels and 191 spectral bands. The clean
image is normalized with entries in each band in the interval [0,1]. The noisy HSI is
simulated by adding Gaussian noise with standard deviation of 0.15 and 20% of the
entries are corrupted by the salt and pepper noise. The compared methods are a low-
rank matrix-based HSI denoising method in [87], a TNN minimization model [88],
and a 3D TNN-based model and its nonconvex version [5]. We show the recovered
results in Fig. 2.1. It is observed that the results obtained by minimizing the 3D
TNN and its nonconvex surrogate are visually better than the results obtained by
minimizing TNN or by using the low-rank matrix-based method.

In the second experiment, a hyperspectral video (HSV)11 of the size 120 × 120 ×
33 × 31 is selected. Specifically, this hyperspectral video has 31 frames and each

10 http://lesun.weebly.com/hyperspectral-data-set.html.
11 http://openremotesensing.net/knowledgebase/hyperspectral-video/.

http://lesun.weebly.com/hyperspectral-data-set.html
http://openremotesensing.net/knowledgebase/hyperspectral-video/
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FIGURE 2.1

The recovered results on the noisy HSI.
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frame has 33 bands from 400 nm to 720 nm wavelength with a 10-nm step [89].
In Fig. 2.3, we show two images located at different frames and different bands in
the HSV recovered by the TNN minimization method [22] and the weighted sum
of TNN (WSTNN) minimization method [70]. WSTNN is designed for the N -th-
order (N ≥ 3) tensor while we reshape the HSV to a third-order tensor of the size
120 × 120 × 1023 by combining its spectral and temporal modes. We can observe
that the WSTNN is evidently superior to the TNN, particularly in the recovery of
texture information.

The third experiment is conducted on the color image named “baboon”.12 This
color image contains 512 × 512 spatial pixels and three color channels. For the color
image, we consider the typical demosaicing problem that aims to estimate the color
image from the Bayer pattern sampling. That is, each two-by-two cell contains two
green, one blue, and one red cell. We first use the SNN minimization model [2] and
the TNN minimization model [22]. Then, we employ a TV regularized TNN mini-
mization method in [62] and a CNN denoiser regularized method [64], in which an
implicit regularization term is also added to input the CNN denoisers expressing the
deep prior learned from a large amount of training images. Fig. 2.2 shows the results
obtained by the different methods. It is observed that the SNN and TNN minimization
models almost failed for this structural sampling case. After adding additional regu-
larizers, “TV+TNN” and “CNN+TNN” successfully recovered this color image.

The first example shows that the performance of TNN can be strongly improved
by considering multiple directions and using the nonconvex surrogate. As shown
in the second example, the strategy of considering multiple directions can be gen-
eralized well for higher-order tensors. It is found from the third example that the
capability of TNN will be limited when the sampling is structured and the introduc-
tion of additional prior knowledge is useful.

2.4.2 Examples of the transform-based t-SVD
In this part, we test methods that are deduced from the transform-based t-SVD.
We display two experimental results on the HSI data “Pavia City Center”13 of the
size 200 × 200 × 80 (height × width × band) and the video “foreman”14 of the size
144 × 176 × 50, respectively. Since the aforementioned transform-based TNN meth-
ods mainly concentrate on the low-rank tensor completion problem, we conduct the
completion experiment in this part. The sampling rate for the video is 50% while 5%
pixels are sampled for the HSI. The involved methods are the original TNN minimiza-
tion model using DFT and its variants using DCT, framelet, and the dictionary. For a
quantitative comparison between different methods, we select two widely used image
quality assessments, namely, the peak signal-to-noise ratio (PSNR) and the structural

12 http://sipi.usc.edu/database/database.php.
13 http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes.
14 http://trace.eas.asu.edu/yuv/.

http://sipi.usc.edu/database/database.php
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://trace.eas.asu.edu/yuv/
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FIGURE 2.2

The demosaicing results on the color image data “baboon”.
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FIGURE 2.3

The completion results of the HSV with SR = 5%. (a)–(d) The image located at the 15th
band and the 7th frame. (e)–(h) The image located at the 25th band and the 30th frame.

similarity index (SSIM) [90]. Higher values indicate better recovery quality. They are
computed on each frontal slice and the mean value is adopted.

We display the visual results together with the PSNR and SSIM values in Figs. 2.4
and 2.5. It is observed that for the video data and the HSI data, DCT-based TNN
outperforms the original TNN that uses DFT. The framelet-based TNN achieves the
second-best performance. The data-dependent dictionary-based TNN obtains the best
visual performance and the highest PSNR and SSIM values.

2.5 Conclusions and new guidelines
In this chapter, focusing on the multidimensional imaging data recovery problem, we
revisit the establishment of the t-SVD framework and the TNN minimization model.
Some extensions such as nonconvex surrogates and adding additional regularization
terms are introduced. Furthermore, we delve more deeply into the t-SVD framework,
and replace the DFT with the linear invertible transform. Then, we discuss the cases
of noninvertible transforms and data adaptive transform. Overall, the prevailing trend
of the development based on the t-SVD framework can be summarized as:

• from the convex model to the nonconvex model,
• from the single low-rankness to the multiple regularization terms,
• from the predefined transform to the data adaptive transform.
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FIGURE 2.4

The 22nd frame of the results on the video data “foreman.”

Thus, in the future, for the recovery of multidimensional images, there are several
possible directions and challenges. The first is to establish the theoretical guaran-
tee of the exact recovery for low-rank tensors via minimizing the weighted form
of the TNN. Extending the leverage score [91] from matrices to tensors may be a
feasible approach for achieving this goal. Although in this chapter we focus on the
practical use of the TNN (or the transform-based TNN) and its variants, only the
theoretical guarantee will make those approaches really practical without additional
concerns. The second direction lies in exploiting reasonable prior knowledge of the
multidimensional images under the maximum a posteriori estimation framework. It is
expected to analyze the distinct low-rank structures along different dimensions [92],
or even some artificially defined dimensions, e.g., the nonlocal self-similarity dimen-
sion. Furthermore, data-driven priors can also be simultaneously considered. Third,
as in [82,86], additional transforms or dictionaries can be considered to be embedded
in the t-SVD framework for better representation of the data implicit low-rankness,
such as the nonlinear transform and the convolutional dictionary. Moreover, the the-
oretical guarantee for noninvertible transform-based TNN minimization methods is
still difficult and new techniques for their analysis are needed. Last, to face the chal-
lenges arising from massive data, acceleration techniques such as the randomized
algorithm in [93–95] can be considered. Moreover, the combination of the above
points is also promising. For example, in [4], the unitary transform-based TNN is
adopted to characterize the similarity of nonlocal patches.
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FIGURE 2.5

The pseudo-color images (R-4 G-12 B-68) and the corresponding enlarged areas of the
results obtained by different methods on the HSI data “Pavia City Center.”
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